Perspectives in Ecology and Conservation Perspectives in Ecology and Conservation
Perspectives in Ecology and Conservation 2017;15:82-90 DOI: 10.1016/j.pecon.2017.06.004
Essays and Perspectives
Introducing digital cameras to monitor plant phenology in the tropics: applications for conservation
Bruna Albertona,, , Ricardo da S. Torresb, Leonardo F. Canciana, Bruno D. Borgesa, Jurandy Almeidac, Greice C. Marianob, Jefersson dos Santosd, Leonor Patricia Cerdeira Morellatoa
a Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Botânica, Laboratório de Fenologia, Rio Claro, SP, Brazil
b Universidade de Campinas (UNICAMP), Institute of Computing, RECOD Lab, Campinas, SP, Brazil
c Universidade Federal de São Paulo (UNIFESP), Institute of Science and Technology, São José dos Campos, SP, Brazil
d Universidade Federal de Minas Gerais (UFMG), Department of Computer Science, Belo Horizonte, MG, Brazil
Received 23 January 2017, Accepted 15 June 2017

The application of digital cameras to monitor the environment is becoming global and changing the way of phenological data collection. The technique of repeated digital photographs to monitor plant phenology (phenocams) has increased due to its low-cost investment, reduced size, easy set up installation, and the possibility of handling high-resolution near-remote data. Considering the widespread use of phenocams worldwide, our main goals here are: (i) to provide a step-by-step guide for phenocam set up in the tropics, reinforce its appliance as an efficient tool for monitoring tropical phenology and foster networking, (ii) to discuss phenocam applications for biological conservation, management, and ecological restoration. We provide the concepts and properties for image analysis which allow representing the phenological status of the vegetation. The association of a long-term imagery data with local sensors (e.g., meteorological stations and surface-atmosphere flux towers) allows a wide range of studies, especially linking phenological patterns to climatic drivers; and the impact of climate changes on plant responses. We show phenocams applications for conservation as to document disturbances and changes on vegetation structure, such as deforestation, fire events, and flooding and the vegetation recovery. Networks of phenocams are growing globally and represent an important tool for conservation and restoration, as it provides hourly to daily information of monitored systems spread over several sites, ecosystems, and climatic zones. Moreover, websites enriched by vegetation dynamic imagery data can promote science knowledge by engaging citizen science participation.

Leaf phenology, Repeated photography, RGB color channels, Conservation biology, e-Science